Pyk2 and Src mediate signaling to CCL18-induced breast cancer metastasis.

نویسندگان

  • Hai-Yan Li
  • Xiu-Ying Cui
  • Wei Wu
  • Feng-Yan Yu
  • He-Rui Yao
  • Qiang Liu
  • Er-Wei Song
  • Jing-Qi Chen
چکیده

Pyk2 and Src phosphorylation is initiated by CCL18, which promotes breast cancer metastasis via its functional G protein-coupled receptor PITPNM3. However, the function of Pyk2 and Src in CCL18-induced breast cancer metastasis is poorly understood. Quantitative reverse-transcription polymerase chain reactions (qRT-PCRs), Western blot, boyden chamber assay, and adherence assay were performed to delineate the consequences of Pyk2/Src in CCL18-induced breast cancer cells. Co-immunoprecipitation and immunofluorescence were performed to analyze the interaction of proteins. Upon the binding of CCL18 to PITPNM3, Pyk2 translocates from the cytoplasm to the plasma membrane to form a stable complex with PITPNM3, subsequently activating Src kinase. Moreover, upon stimulation with CCL18, Pyk2 and Src become essential for integrin alpha5/beta1 clustering-dependent adherence, migration, and invasion. Pyk2 and Src are important in CCL18-induced breast cancer metastasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PYK2 integrates growth factor and cytokine receptors signaling and potentiates breast cancer invasion via a positive feedback loop

The involvement of ErbB family members in breast cancer progression and metastasis has been demonstrated by many studies. However, the downstream effectors that mediate their migratory and invasive responses have not been fully explored. In this study, we show that the non-receptor tyrosine kinase PYK2 is a key effector of EGFR and HER2 signaling in human breast carcinoma. We found that PYK2 is...

متن کامل

CCL18-mediated down-regulation of miR98 and miR27b promotes breast cancer metastasis

Our previous work has indicated that CCL18 secreted by tumor-associated macrophages (TAMs) promotes breast cancer metastasis, which is associated with poor patient prognosis. However, it remains unclear whether microRNAs (miRNAs), which may modulate multiple cellular pathways, are involved in the regulation of CCL18 signaling and the ensuing metastasis of breast cancer. In this study, we demons...

متن کامل

CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3.

Tumor-associated macrophages (TAMs) can influence cancer progression and metastasis, but the mechanism remains unclear. Here, we show that breast TAMs abundantly produce CCL18, and its expression in blood or cancer stroma is associated with metastasis and reduced patient survival. CCL18 released by breast TAMs promotes the invasiveness of cancer cells by triggering integrin clustering and enhan...

متن کامل

CCL18 from tumor-associated macrophages promotes angiogenesis in breast cancer.

The infiltration of tumor-associated macrophages (TAMs) is associated with extensive angiogenesis, which contributes to a poor prognosis in breast cancer. However, anti-angiogenic therapy with VEGF-specific monotherapy has been unsuccessful in treating breast cancer, and the molecular mechanisms associated with chemoresistance remain unclear. Here, we investigated whether CCL18, a chemokine pro...

متن کامل

Pyk2 amplifies epidermal growth factor and c-Src-induced Stat3 activation.

Signal transducers and activators of transcription factors (STATs) mediate many of the cellular responses that occur following cytokine, growth factor, and hormone signaling. STATs are activated by tyrosine and serine phosphorylation, which normally occurs as a tightly regulated process. Dysregulated STAT activity may facilitate oncogenesis, as constitutively activated STATs have been found in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cellular biochemistry

دوره 115 3  شماره 

صفحات  -

تاریخ انتشار 2014